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Abshact The s p e c ”  of a lwodimensional electmn system in a ~~ lattice potential subjed 
to a perpendicular magnetic held is considered. Well lmown symmetry considerations show that 
if the magnetic field flux per unit cell (measured in units of the Ew quantum hcflel) is rational 
and non-integer, the eleclron energy can be expressed as a function of a generalized m o m ”  
k and the spectrum wnsists of translationally degenerate bands in kapace. In this work it is 
shown that if the chemical potential is located at a logarithmic Van Hove singularity of the 
density of states then it is possible that a periodic lattice distortion is energetically favourable. 
This instability persists when the flux i s  changed within a small interval. The width of this 
interval as well as the critical temperature ”king the onset of the instabiiity can be estimated 
with logarithmic accuracy. The effects of electroReleCtrOn interactions are considered in the 
Hartree approximation. 

i. I&oduction 

The application of a constant magnetic field strongly modifies the band stm&ture of electrons 
moving in two-dimensional periodic electrostatic potentials. The qualitative properties of the 
resulting spectrum depend only on a single parameter, the ratio between the magnetic field 
flux per unit cell ($) and the flux quantum ($0 = hc/lel) as was shown by Brown (1964) 
and Zak (1964). (See also the paper by Hofstadter (1976) for a more detailed discription). 

When the magnetic field flux per unit cell ($/&) is non-integer and rational it is possible 
to introduce a set of commuting magnetic translation operators (which commute with the 
Hamiltonian) defined in a lattice that has a unit cell (‘magnetic cell’) larger than the real 
unit cell of the crystal (Brown 1964, Zak 1964). From this discrete translation symmetry 
results a generalized quasimomentum k and the spectrum consists of several degenerate 
bands in k-space. So, it is seen that in this case the magnetic field introduces a periodicity 
additional to that of the lattice. The question this paper is addressed to is whether it is 
energetically profitable for the lattice to change its period and adjust the lattice translations 
to the magnetic translations. This tendency for, say, q5 = q50/2, would resemble the Peierls 
instability (Peierls 1955) of the onedimensional metals. It is found that there is no such 
instability for arbitrary elearon concentrations but, if the concentration corresponds to the 
chemical potential being located at a logarithmic Van Hove singularity of the density of 
states then, in the non-interacting electron picture, there is an instability Ieading to a periodic 
lattice distmtion (PLD) for arbitrarily weak electron-phonon- coupling. The PLD affects the 
energy spectrum by splitting originally coincident Van Hove (logarithmic) singularities and 
the consequent electron redistribution over the k-states in the Brillouin zone lowers the 

t On leave fiom L D Landau Institute for Theoretical physics, Moscow. Russia 

0953-89&1/94/428839+14919.50 @ 1994 IOP Publishing Ltd 8839 



8840 . M A  NAraujo and D E Khmelnitskii 

DES energy by an amount that exceeds the work done by the elastic forces. For, if the 
singularities are split by an amount U, then, at T = 0, the energy of the non-interacting ZDES 
is lowered by AE a u2 log U. n e  PLD would then always occur since the elastic energy of 
deformation is proportional to U'. Electron interactions screen the lattice potential, however, 
and as a result the decrease in the ZDDES energy becomes comparable to the elastic energy 
of the lattice deformation (a uz). The sign of the net quadratic term will then determine 
the existence of an instability. 

The model Hamiltonian for the two-dimensional system is taken as 

where V x A = B i  is a constant magnetic field and V ( x ,  y )  describes a square lattice 
potential with lattice spacing a. We shall first focus on the case in which @ = +&. Finite- 
temperature effects will be studied, as well as the behaviour of the instability for small 
changes in the flux. The latter must, of course, be kept within a small critical interval 
for the instability to exist. The width of this interval and the critical temperature of the 
transition to the PLD phase will be given by expressions with logarithmic accuracy. 

2. ~heory  of the @ = $@o case 

The magnetic unit cell may be defined by the vectors 

u1 = 2a2 

w=ac 

and the electron eigenstates $k form a one-dimensional representation of the magnetic 
translation group: 

T&(r) = e'k.L@k(T) (2) 

with 

TL 5 exp[i(p - :A) . L] 

and L is any magnetic lattice vector. The important feature of the electron dispersion 
relation is its periodicity in the y-component of IC (Lifshitz and Pitaevskii 1980): 

which makes the magnetic Brillouin zone effectively consist of a set of two hanslationally 
degenerate 'valleys'. 
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We now consider the effect of a periodic lattice distortion along the direction of one of 
the primitive vectors (the x-axis is chosen for convenience) with period ZQ: 

(4) 
n 

V ( x )  = v cos -x. 
a 

The i m p o m t  feature of this perturbation is that it does not couple states with different 
k but its diagonal matrix elements lift the above-mentioned valley degeneracy according to 

(5) 

(Eo@) is the unperturbed dispersion relation) and this causes the valleys to exchange 
particles. If the chemical potential lies at a saddle point of the dispersion relation (a 
Van Hove singularity in the density of states) then this process will lower the energy of the 
electron system by an amount proportional to -V2 Iog V (see below). Since this is stronger 
than the work done by the elastic forces (a V2), a PLD is likely to occur. The screening of 
the lattice potential due to electron interactions will be considered later. 

It is easy to see that the application of a flux quantum through the unit cell would not 
lead to a lattice distortion, for in this case a perturbation of wavelength 2a (for instance) 
would cause a gap in the k, dependence of the energy at kx = b / 2 a  (which might depend 
smoothly on ky)  and we could then consider two possible band fillings (see figures 1 and 
2). The energy change is 

A E o : /  dkxdkyAE(k, ,ky)  (6) 

and the main contribution to the integral comes from the shaded regions. Integration along 
k, always leads to a factor of V z  log V. In the case illustrated in figure 1 the energy 
dependence on ky is quadratic and since the gap is o[ V, the width of the integration region 
is o[ a. So AE a V5I2 log V. In the case of figure 2 the ky dependence is linear and 
therefore A E  0: V 3  log V. In both cases A E  << V2 and V z  is the elastic energy associated 
with the lattice deformation. 

The following further assumptions about E&) are introduced. If p is an integer such 
that 

E ( k )  = Ea(k) + (k I 3 I k) 

- 2 ( p < 2  

then there are saddle-points at k = (0, pn/ZQ) for odd p and k = (in/2a, ptrr/2a) for 
even p .  They all have the same energy, which is taken to be zero, so that the following 
expansions are valid in their vicinity: 

for even p 
fi2 

Eo(k,, k,) Y - (kx - 2)' + (k, - 5)' 2m- 2m+ 

fi2 
Eo(kx, ky) 1 -kxz + - 

(7) 

(ky - 5)' 2m+ 2m- 
for odd p 

where m- (c 0) and m+ (> 0) denote effective masses. These assumptions are very 
general and not restrictive. The theory is also applicable to other saddle-points that might 
eventually exist. 
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Figure 1. Possible Fermi surface for a system with a dispersion relation showing a gap af 
kr = +n/(k)  as a consequence of a periodic lattice distortion with period 20. The magnetic 
field strength is equivalent to one flux quantum per unit cell. The reduction in Lhe 2DF.S energy 
resulting fmm h distortion is obtained by integration inside the shaded region. 

Figure 2. The same system as in figure 1 with a larger band filling. 
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The contribution of each saddle-point, at given ky, to the total density of states takes 
the form (Van Hove 1953) 

Here W represents an energy scale that is of the order of the bandwidth and the total 
density of states for energies close to zero is given by the sum of the contributions (8) with 
logarithmic accuracy. The perturbation 9 only has diagonal matrix elements: 

(k I ? I  F E )  = V/d2r cos(%x) I&(r)lZ (9) 

Since the state @k+(n,o)p is obtained by applying the translation operator along 45 (not 
a magnetic lattice vector) to the state @fi, it is seen that the expressjon (9) changes sign 
when k is replaced by k + (x/u)&. We can then assume that (k I V I k) is positive for 
-n/a -= kr < x/a passing through zero at ky = +n/2a. The energy of the saddle-points 
with ky = f n / k  is then changed by an amount that is proportional to V2 and the saddle 
points (k') with ky = 0 and ky = n/a have their energy changed by U, proportional to V, 
defined by 

and U is the small parameter in the problem. 

fixed number of particles, the equation for the changed value of the chemical potential is 
We now consider T = 0. If the chemical potential p = 0 and the transition occurs at 

(p-U) loglp-U\ + (LL+u) l o g l ~ + u l + 2 ( ~ - f f  u2)logljL-ff uZI=O 

and this implies I.L a U', which is small. Therefore, the transition occurs at practically 
constant chemical potential. The variation of the ZDES energy is 

The logarithmic singularity that is displaced by cc u2 gives a negligible contribution and 
was ignored. 

The effect of finite temperature is to smear the electron distribution around the 
logarithmic singularity in  the density of states over a range of energies of order T (we 
take kB = 1). The splitting of the singularities will then cause a variation in the ZDES 
energy that is not so saong as in the zero-temperature case. If this phenomenon- only 
involves electron redistribution near the singularities, it is clear that the energy T will have 
to be much smaller than the energy scales that characterize the band shape. In particular, 
it is smaller than the energy range in which the density of states is logarithmic. In what 
follows it is assumed that the chemical potential (p = 0) lies at a Van Hove singularity of 
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the unperturbed spectrum (changes in p as a result of the distortion would be negligible). 
The energy vasiation is now going to be proportional to U’, A E  = u’xo, with 

MA N Araujo and D E Khmelnitskii 

where f(E) denotes the Fermi-Dirac distribution function. Since the integral diverges 
logarithmically with the cut-off we obtain, with logarithmic accuracy, 

With the aim of studying the effect of electron interactions, which is to screen the pLD 
potential, we first derive the relation between xo and the amplitude of the electron density 
wave created by the distortion. Since the perturbation caused by the PLD is diagonal we 
can write 

A E  =E[ (E; + (1~s. I ir I qj)) nj -E;  n; ] (14) 
j 

where j denotes a quantum state, nj (n;) represents the thermal occupation number of the 
state j after (before) the PLD and E; is the unpexhxbed energy of j .  Since 

we have 

Since the quantities h ( r )  and V(r) are proportional to cos(Zx/(Ax)) ( A  = 2n in the present 
problem) with amplitudes -8n and V respectively, we obtain 

8n = - A E  - E; (ni - $1 = - I A E  I _= ~ W ~ I K ~ I V .  (1 7) 
U , I 4: 

In the self-consistent Hartree approximation the potential in (4) represents the sum of 
the potential that is created by the PLD and the field created by the electron density variation: 

where Um(q) = 2ne2/(cq) is the two-dimensional Fourier transform of the Coulomb 
potential (henceforth abbreviated by U). So the density is given by the mean-field expression 
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Since the singleelectron dispersion relation E(k) now includes the effects of the field 
created by the other electrons, the Hartree potential must be subtracted when calculating 
the total energy so as to avoid the double counting of the interactions: 

Ei., = C E ( k )  6’(p - E @ ) )  - / n ( T ) n ( r ’ ) U ( r  - r’)d2rd2r’. (20) 
k 

The energy change is, after Fourier transforming the Ha~tree term, 

It is easy to see that the first term on the right-hand side is small and can be neglected. The 
sum over q contains only one wavelength, q = ~ ( x / a ) x .  Therefore, 

AEint 2 -8n’U. (22) 

At T = 0 we have xo = 00 so 

Since the elastic energy of the deformation is also proportional to K2, 

Eelastic = I K2 I > 0 

an instability exists when 

E I-- < 0. 
2ae2 

The critical temperature T, of the (second-order) phase transition to the PLD state is 
obtained from the condition 

A E ~ , ~  = -U sn2(Tc) = -E~,&. (26) 

The result is 

The right-hand side must be large for the logarithmic accuracy to hold. 

3. Behaviour of the instability for c$ i= ;& 

Let the total magnetic field be (Bo + B ) i  with Boa2 = &/2. B satisfies 

W 
fiw 

fio << w log - >> 1 
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with o =I e B / ( c  JW) I. We now need to learn how the density of states is mdf i ed  
near the singularity at E = 0. The calculation of the spectrum can be done by means of 
the 'Peierls substitution' (Peierls 1933): 

M A  N Araujo and D E Khmelnitskii 

E ( k ) +  E K--A'  ( h 3  
with A' = BxG, for instance. E(k)  is the dispersion relation used so far. The definition of 
the generalized momentum K 

e 
hc 

k = K - -A' 

implies 
eB 
hc 

[k , ,ky]  = i-. 

It is seen that Ky is a cyclic variable (-x/2n < K y  < n/2a) and can be set equal to 
zero for the calculation of the spectrum. The principles of the calculation were established 
in the fifties (Zilberman 1958, Azbel 1964, Slutskin 1968). The wavefunction e(&) must 
be an eigenstate of the operator 

with eigenvalue e'B (0 < 0 < 2n) and @(KJ = @(K, + n/a). The dispersion relation is 
given by 

with E = E / ( h o )  and 

is the area enclosed by the Fermi surface at energy E .  If I E ~  >> 1 then the asymptotic 
expression of the gamma function for large argument can be used to show that (32) reduces 
to 

which describes the well known Landau levels that can be obtained from the Bohr- 
Sommerfeld quantization rule. 

In order to obtain an expression for the case in which ( E (  is not large we first note that 

(with A W / ( h o )  and recast equation (32) in the form 
e 

cos' - ~s cosh(ze) cos 
2 

Factors of order unity in the argument of the logarithm in (36) were neglected. So, as ( E (  

rends to zero the spectrum consists of regularly spaced bands of slowly varying width. The 
first term in the argument of the cosine determines whether the chemical potential p = 0 
lies in a band or in a gap and is of order A. It is therefore extremely sensitive to small 
changes in hw as it can vary by 2x if ho is varied by S@w) satisfying 

S(ho) h o  - Fs -. 
h o  W 
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3.1. Effect of the PLD 

Equation (32) shows that the electron energy spectrum exibits a somewhat complicated 
structure consisting of discrete bands of variable width. The expression for xo is written as 

where & ( E )  is the internal density of states in the nth band and 

le BI p,(E) dE  = - s kfrc  ' 

The curve of critical temperatures T,(B) is determined from the equations (19) and (26). 
If T >> fro the discreteness of the energy spectrum becomes irrelevant and the sum 

over n in equation (37) can be replaced with an integral over a continuous distribution of 
bands: 

le BI dn 
Xa"- 4RhC 1 -wdE - (*Ef(E)) dE2 E+Em dE 

with 

which represents the density of zeros of the right-hand side of equation (32). $r here denotes 
the digamma function. The correction to the B = 0 result can be expanded in powers of 
AofT: 

with 

The equation for Tc is 

From here we get 

(Td denotes the critical temperature at B = 0) if the corrections due to the variability of 
the right-hand side of (40) with B are neglected (see next section). 
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At small temperature (T N ho/logA) the function d2(Ef(E))/dE2 has a sharp 
maximum at the chemical potential E = w = 0 and decays in an energy interval of 
order T. As T + 0, xo(T, B )  becomes strongly dependent on the exact position of the 
bands near the chemical potential and is not even a monotonic function of T. The intemal 
density of states of the band that is close to the origin is, from (36), 

if 

x h o  

and p(E) = 0 outside this interval. So it is seen that p(E) diverges at the band edges. If 
the band is centred at an energy EO satisfying (42) then, as T + 0, 

xa + --fp(-Eo). (43) 

If Eo = ~kxhwj(41ogA) then xo diverges with T-’”. 
Because the behaviour of xo is very sensitive to changes in h o  of order Shw, it will be 

here assumed that the spectrum that is ‘seen’ by the electron is averaged over fluctuations 
in h o  that are not much larger than SAw. This corresponds to taking the average of 
equation (43) over EO ranging from --xRo/(2log A) to +xRo/(2 Log A). Because EO 
varies (approximately) linearly with the fluctuation d@o) then 

14- fio log - W ’  xo(T = 0, B )  = log * / p(-Ea)dEo = - 
2 x h o  2 2z2222 

So T,(B) + 0 at a critical magnetic field (hoc,) determined by 

The right-hand side depends on the magnetic field (see next section) and must be large. 

4. Example 

These ideas can be illustrated with a simple model in which the cyclotron energy (hw) 
associated with the field BO is large when compared to the crystal potential caused by the 
lattice. The latter can then be treated as a perturbation on the lowest Landau level and will 
be assumed to have the simple form 

Vp(X. Y) = V&) + Vp(Y1. (46) 

In the gauge A = EoxQ we can write the electron wavefunction as 
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with 

and 1’ = Rc/(lelBo).The dispersion relation will then be separable in a similar fashion 

ky) = &(kx) + (48) 

It follows from (4) and (5)  that the effect of the lattice distortion is 

E(k) = & ( I C )  + UCOS(U~,) (49) 

and 

This follows from the fact that the unpertnrbed wavefunctions 

eikry@(x + Pk,) 6 1 )  

have their k,-degeneracy lifted by V&) and V,(y) introduces matrix elements between 
states of the form (51) with ky and kk satisfying 

where j is an integer, so that Eo(k,) is the dispersion relation .in a tight-binding (TB) 
problem. If the magnetic field is (BO + B)% then the energies of the ‘sites’ in the TB have 
a very slow variation is space with wavelength A = nfic/(Blela) and the semiclassical 
approximation can be. used to obtain a dispersion relation identical to (32) with .9 replaced 
by KA where K is a ‘Blcch momentum’. The distance between the sites is now 2nlz/a , 
slightly different from 2u. Each sequence of sites in the TEi problem can be labelled by k, 
with -z/a < ky < z / a  and this is the cyclic variable in the problem. It is then easy to 
see that a PLD with wavelength A = 2nlz/a will l i t  the k,-degeneracy by adding a term 
U cos(ak,) to the electron dispersion relation, as in (49). This is analogous to the broadening 
of the Landau levels of an initially free electron when a small crystal potential is applied. 
The changing wavelength of the PLD could not be obtained if the case B # 0 were treated 
just by the means of a ‘Peierls substitution’. 

The B dependence of the right-hand side of (40) can now be estimated. Since the 
elastic energy of deformation is proportional to A2/A2 (A is the amplitude of the PLD) then 
Z a A-’. This implies 

1 aw i a z  1 au 1 a -  __ - -_ - _ _  
w aB - I aB - U aB Bo 

and 
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(Io, Uo and Td are the values of I, U and T, at B = 0). The maximum critical temperature 
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( T , )  is 

Using (27), (41) and (52) we see that the square root of the second term in (53) is of the 
order of (y m) 

where 

was used. Since 

is large in this theory we should expect (54) and, therefore, the effect of the dependence of 
the right-hand side of (40) on B to be small. In conclusion, we see that the method used in 
section 3, which was based on the Peierls substitution, gives a result that is nearly correct 
since the effects of the dependences of the parameter w and wavelength of distortion on the 
magnetic field (not taken into account in that method) cause only a small correction when 
the condition log W/Td >> 1 is satisfied. 

5. Discussion 

It is seen from (23) that the energy variation associated with a distortion at T = 0 does 
not depend on the details of the band shape (such as the effective masses m+ and m-) but 
simply on the wavelength I of the PLD. Therefore, the role of the logarithmic form of the 
density of states is just to make the PLD likely to occur and the instability criterion UI < 1 
simply depends on A. The critical temperature Tc and critical field Bu will depend on the 
band-shape details, however. 

The analysis of the &/Z case together with the results of group theory and earlier 
investigations on the band structure (wannier et a1 1979, Czycholl et QI 1988) enable us to 
derive the foIlowing conclusions. If the magnetic field flux per unit ceII of a square lattice 
is non-integer and rational, q5/& = p / 4 ,  then the spectrum will consist of p subbands with 
q-fold degeneracy. Each of these p subbands contains a logarithmic Van Hove singularity in 
the density of states and the instability can then occur at p possible valua of the chemical 
potential. The correspondent PLD has a wavelength A = 4a /m (where m is an integer) 
and in those cases where several values of m are possible the PLD will choose the one that 
minimizes the total energy variation A E  a -U-' + I ,  i.e., an expression of the form 

m m4 
4 4  

-or-++B-js 
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Figure 3. Phase dii&" corresponding to different rational values p/q of the Rux per unit 
cell. The shaded regions correspond to tk iiistorted phase. The maximum of each m e  is 
attained for +/$o close to p/q. 

(since U x A and I a ,I-') where a and ,9 are positive constants. 
For each flux p / q  we can then draw a phase diagram &(E)  (corresponding to one of 

the p possible chemical potentials) as was done in Section 3 for the 4 case. The maximum 
of the curve is located near the field B which corresponds to q5/& = p / q  ( B  = 0 in 
figure 3) and its deviation from exact commensurability is small. provided log WIT& is 
large. Since the rational numbers in the range BcraZ/q50 around p / q  have a much larger 
denominator (and numerator) than q,  it is expected that the corresponding bandwidths and 
critical temperatures are very small and therefore more difficult to observe. From here we 
see that the drastic changes in the analytic form of the density of states induced by small 
changes in the flux per unit cell make the phase diagram show the fiactality just described. 

We finally comment on the experimental verification of these ideas. It is beyond the 
current technology to apply magnetic fields equivalent to about 40/2 per unit cell of a 
real crystal. It is, however, possible, with modem microfabrication techniques, to subject 
a ZDES to an artificially created square lattice potential with large lattice spacing, through 
which such magnetic-field fluxes can be applied. The instability would then correspond to 
a distortion of the thin layer of the material that contains the electron gas. 

It is elucidating to consider a thin slab (of thickness N 10 nm) containing the quasitwo- 
dimensional electron gas and a compensating positively charged background. Under the 
inffuence an externally applied square lattice potential with, say, U = 200 m, the slab 
would make a distortion with period 2a (for q5 = &/2).  Using dielectric and elastic 
(Young's modulus) constants of the order of those corresponding to, e.g. GaAs, we estimate 
IU Y and 0 N 10% J-' m-2 . Since h2/(J-"-) Y Wu2 and M = 0.045 
we see that if W N- 0.01 meV then TE is of the order of a few tens of millkelvin. Note 
that because log TJW is proportional to W it is convenient to choose small W so as to 
have To Y W and make the transition occur at experimentally accessible temperatures. 
Here the equation (27) would not be valid because it has logarithmic accuracy. This model 
for the quasitwo-dimensional system is perhaps too simple to describe the real ~DEG as 
it is currently fabricated because the positively charged background may be far from the 
2DEG. But it is worth noting that a metal gate placed near the ZDEG would induce image 
charge effects and reduce the screening of the lattice potential. The inequality (25) would 
then be replaced by a much less restrictive condition and TE would increase. Furthermore, a 
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material should be chosen for which the dielectric constant and the relevant elastic constants 
(Young's modulus) are as small as possible. 
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